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Activities of the components, the Gibbs energy of mixing, and the excess entropy of mixing have
been calculated for the Ca2MgSi2O7–CaSiO3 system. The mole fractions of the components were cal-
culated assuming that in the point of the formal component Ca2MgSi2O7, the molar mass of the
quasi-real particle in the melt corresponds to its formula molar mass, whereas in the point of the
formal component CaSiO3 the molar mass of the quasi-real particle in the melt is 8.5 times higher
than as corresponds to its formula. The fact that the enthalpy of mixing is zero whereas the excess
entropy of mixing is non-zero suggests that Ca2MgSi2O7–CaSiO3 melts behave as athermal solutions.
Keywords: Akermanite; Wollastonite; Thermodynamics of mixing.

Knowledge of the thermodynamic quantities of the CaO–MgO–SiO2 melt system is a
prerequisite for a quantitative characterization of the properties of this system, which
are of theoretical as well as practical interest, e.g. for thermodynamic analysis and
geophysical considerations on the one hand, and for ceramic and metallurgical techno-
logies on the other hand. In this paper we deal with the akermanite–wollastonite
(Ca2MgSi2O7–CaSiO3) binary system.

In our previous papers1,2 we calculated the mean numbers of SiO4 tetrahedra in anions
present in CaMgSi2O6 and CaSiO3 melts based on the Ca2MgSi2O7 liquidus curves of
the Ca2MgSi2O7–CaMgSi2O6 and Ca2MgSi2O7–CaSiO3 phase diagrams, respectively.
The molar mass of the component anions has been determined as a multiple of that of
the formula unit using the cryometrical principle, whereas the molar mass of the quasi-
real particle was calculated by employing the Le Chatelier–Shreder equation in the
region of infinitesimally diluted solutions1,2. The experimental basis for this calculation
comprised the enthalpy of fusion of akermanite3 and the phase diagrams of the
Ca2MgSi2O7–CaMgSi2O6 and Ca2MgSi2O7–CaSiO3 systems4,5.

Over the temperature range of 1 673–1 950 K, the enthalpy of mixing in the
Ca2MgSi2O7–CaSiO3 melt calculated based on the temperature and composition de-
pendences of the relative enthalpy, determined from the relative enthalpies of selected
melts in this system, is zero within the experimental error6,7. The relative enthalpy of
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the phase at a given temperature is defined as the negative sum of the heat of cooling
from that temperature to the temperature of dissolution and the heat of solution of the
cooled sample; both heats are determined calorimetrically8.

In this paper, the activities of the quasi-real components, the Gibbs energy of mixing, and
the excess entropy of mixing are calculated based on the use of the Ca2MgSi2O7–CaSiO3

phase diagram5 taking into account the above facts.

THEORETICAL

As in refs2,9, we assume that the melt of pure Ca2MgSi2O7 contains mostly disilicate
anions Si2O7

6− and Ca2+ and Mg2+ cations, as follows both from the infrared spectra of
akermanite glass9 and from the molar mass of Ca2MgSi2O7 (ref.2) calculated based on
the experimental liquidus curve of CaSiO3 (ref.5) and the experimental value of the
enthalpy of fusion of wollastonite10. The liquidus curves of akermanite in phase dia-
grams of the two systems indicate that the mean number of SiO4 tetrahedra in the quasi-
real anions in melts of the two monosilicates is N

__
(CaSiO3) = N

__
(CaMgSi2O6) = 8.5.

Mean numbers of tetrahedra in the monosilicates and disilicate anions have been estab-
lished in their mutual ideal (infinitely diluted) solutions at temperatures close to the
melting points of the end-members. Consequently, the activities of the quasi-real anions
of the solvents are identical with their mole fractions in those composition regions.

The temperature dependence of activity of a component X in a solution having a
chosen composition xc can be written in general as

ln a(X,xc,T2) = ln a(X,xc,T1) − ∫ 
T1

T2 ∆mixH
__

(X,xc,T)
RT2  dT  , (1)

where ∆mixH
__

(X,xc,T) is the temperature-dependent partial molar enthalpy of mixing of
component X in the solution of composition xc. The activities of components in
Ca2MgSi2O7–CaSiO3 melts do not depend on temperature owing to the fact that both
∆mixH and ∆mixH

__
 are zero6. This implies that the mole fractions of the prevailing com-

ponents, and thus also the molar masses of the quasi-real particles constituting them,
are temperature independent in infinitely diluted solutions.

Three types of processes can be considered during mixing Ca2MgSi2O7 and CaSiO3 melts:
1. No chemical reaction occurs. In this case ∆mixH is zero within the limits of ex-

perimental error, and the numbers of SiO4 tetrahedra in anions of the two components
are composition-independent.

2.  Mutual equilibrium reactions of the two types of anions giving rise to linear chain
anions according to scheme (A) 

[SiO3]N
__2N

__
−  +  Si2O7

6−  =  [[SiO3](N
__

+2)O](2N
__

+6)− (A)
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which can contribute to the enthalpy of mixing of the Ca2MgSi2O7–CaSiO3 melts. (In
this scheme  N

__
 ≡ N

__
(CaSiO3) is the mean number of SiO4 tetrahedra constituting the

quasi-real anion in the CaSiO3 melt.) The numbers of bridging and terminal oxygen
atoms remain unchanged. The reaction enthalpy can be assumed to be zero or close to
zero. It is conceivable that the linear chain anions produced by reaction (A) might
undergo further decomposition due to the additional effect of the Si2O7

6− anions; actually,
however, this is rather improbable because there is no reasonable explanation why such
reaction should terminate at the relatively high value of N

__
(CaSiO3) = 8.5. Thus also in

this case, addition of 8.5 formal moles of CaSiO3 to the Ca2MgSi2O7 melt is equivalent to
the addition of one mole of the quasi-real component. The mole fraction of the quasi-real
component corresponds to (CaSiO3)8.5 over the entire melt composition range.

3. Mutual reactions of the monosilicate anions described by the equations

[SiO3]N
__

1

2N
__

1−  +  [SiO3]N
__

2

2N
__

2−                 2[SiO3]N
__2N
__

− (B)

and

[SiO3]2N
__4N
__

−                 2[SiO3]N
__2N

__
−  . (C)

Reaction (B) cannot reach its equilibrium in infinitely diluted solution in which
N
__

(CaSiO3) = 8.5. This indicates that the melt of pure monosilicate itself consists of
anions with N

__
(CaSiO3) = 8.5. Again, it is improbable that the particles with

N
__

(CaSiO3) = 8.5 in infinitely dilute solutions of CaSiO3 in the Ca2MgSi2O7 melt are
products of reaction (C), because if such dissociative decomposition took place, it
would hardly stop at N

__
(CaSiO3) = 8.5. Hence, the particles in question are apparently

present in the very melt of pure CaSiO3. Since monosilicate anions consist of closed
strings irrespective of the number of SiO4 tetrahedra present in them (which implies that
for both types of the reactions mentioned the number and kinds of bonds are constant),
the reaction enthalpies of these processes and thus also the mixing enthalpies in this
system are virtually zero.

The mean values of N
__

(Ca2MgSi2O7) = 2 and N
__

(CaSiO3) = 8.5 remain constant over
the entire temperature and composition ranges. So, they can be used to the mole frac-
tions of the quasi-real components, x(Xreal), corresponding to the particles actually
existing in the melt. The mole fractions of the quasi-real components in the melt of the
system investigated were calculated assuming that in the point of the formal component
Ca2MgSi2O7, the molar mass of the quasi-real particle in the melt is equal to that
corresponding to its formula, whereas in the point of the formal component CaSiO3, the
molar mass of the quasi-real particle in the melt is 8.5 times larger than as corresponds
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to its formula. The mole fractions of the quasi-real components are more suitable to
express the composition of the melts than the formal ones.

Figure 1 shows the phase diagram of the Ca2MgSi2O7–CaSiO3 system measured by
Schairer and Bowen5, expressed in terms of the mole fractions of both the formal
(dotted line) and quasi-real (solid line) components.

RESULTS AND DISCUSSION

Activities of the Quasi-Real Components at Temperature Tc

The activity of a quasi-real component in the melt which is in equilibrium with the
corresponding crystalline phase at temperature Teq is obtained by using the LeChate-
lier–Shreder equation

ln a(Xreal,xc,Teq) = ∫ 
Tfus(X)

Teqν
__

(Xform)∆fusH(Xform,T)
RT2  dT  , (2)

where Xreal and Xform are the quasi-real and formal components in the melt, respec-
tively, ν

__
(Xform) is the mean value of the quasi-real-to-formal component molar mass

ratio in the melt (ν
__
(Xform) = M(Xreal)/M(Xform); ν

__
(Ca2MgSi2O7) = 1 and ν

__
(CaSiO3) = 8.5),

and ∆fusH(Xform,T) is the temperature dependence of the enthalpy of fusion of the for-
mal component, calculated from the equation

∆fusH(Xform,T) = Hrel(melt, Xform,T) − Hrel(cryst, Xform,T)  , (3)
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FIG. 1
Phase diagram of the Ca2MgSi2O7–CaSiO3 system.
The dotted line refers to the formal mole fractions, the
solid line refers to the quasi-real mole fractions
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where Hrel(melt,Xform,T) and Hrel(cryst,Xform,T) are the temperature dependences of the
relative enthalpies of the melt and of the crystalline component X, respectively. The
relative enthalpy of the melt or crystalline component is defined as

Hrel(Xform,T) = H(Xform,T) − H(Xform,298 K) − ∆solH(Xform,298 K)  , (4)

where ∆solH(Xform,298 K) is the heat of solution of the cooled melt or crystalline com-
ponent at 298 K. The values of Hrel(melt,Xform,T) for Ca2MgSi2O7 and CaSiO3 were
taken from ref.6. The Hrel(cryst,Xform,T) values were obtained from the temperature de-
pendences of the heat capacities11,12 and from the heats of solution of the crystalline
phases3,10.

The equilibrium temperature Teq, corresponding to the chosen mole fraction xc(Xreal)
of the quasi-real component in the phase diagram in Fig. 1 was inserted in Eq. (2).
From Eqs (1) and (2) where T1 = Teq and T2 = Tc it follows the calculated activity of the
quasi-real component Xreal at the equilibrium temperature Teq and the selected mole
fraction xc(Xreal), a(Xreal,Teq,xc(Xreal)), is also equal to its activity at any other tempera-
ture Tc. The activities a((CaSiO3)8.5) for xc((CaSiO3)8.5) ∈ 〈0;xe((CaSiO3)8.5)〉 and
a(Ca2MgSi2O7) for xc((CaSiO3)8.5) ∈ 〈xe((CaSiO3)8.5);1〉 were calculated using the
Gibbs–Duhem and Margules equations13.

The activities of the two quasi-real components in dependence on x((CaSiO3)8.5) for
temperatures within the interval from the eutectic temperature Te to 1 950 K are plotted in Fig. 2.

Excess Entropy of Mixing ∆mixS
E

The Gibbs energies of mixing ∆mixG in dependence on the composition were calcu-
lated for the temperature of 1 800 K using the composition dependences of the acti-
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FIG. 2
Activities a(Ca2MgSi2O7, Tc) (1) and a((CaSiO3)8.5, Tc)
(2) in dependence on x((CaSiO3)8.5) at 1 673–1 950 K
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vities. The values of T∆mixS and T∆mixS
E were obtained from the following equations,

which are derived based on the definition of ∆mixS and the fact that ∆mixH = 0:

T∆mixS = −∆mixG (5)

T∆mixS
E = −∆mixG + RT[x(Ca2MgSi2O7) ln x(Ca2MgSi2O7) + 

+ x((CaSiO3)8.5) ln x((CaSiO3)8.5)]  . (6)

The composition dependences of ∆mixG, T∆mixS and T∆mixS
E at 1 800 K are plotted in

Fig. 3.

Discussion and Conclusions

Small or zero values of the reaction contributions to the enthalpy of mixing of the melts
are consistent with the zero value of ∆mixH. The zero enthalpies of reactions (B) and (C)
leading to the equilibrium distribution of anion sizes in the monosilicate melt implies
that the mean number of SiO4 tetrahedra in the monosilicate anions is independent of
temperature.

The non-ideality of the molten solutions of the system studied can be explained by:
a) the difference between the real component activities calculated from Eq. (2) and

the mole fractions (Fig. 2) found using the liquidus curves in the phase diagram (Fig. 1);
b) the non-zero value of the excess entropy of mixing (Fig. 3);
c) the asymmetrical shapes of the activity–composition curves and of the composi-

tion dependences of ∆mixG, T∆mixS and T∆mixS
E. The maximum of the T∆mixS

E curve is
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FIG. 3
Composition dependences of T∆mixS (1),
T∆mixS

E (2) and ∆mixG (3) at 1 800 K
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shifted towards the composition region of higher Ca2MgSi2O7 contents implying a bet-
ter order in the melt in this region.

The largest contribution to the excess entropy of mixing is due to the differences in
the size and shape of anions of the two components. The activities of the quasi-real
components in the composition regions close to the pure components (Fig. 2) must
agree with their mole fractions owing to the application of the cryometrical method of
calculation of N

__
(Ca2MgSi2O7) and N

__
(CaSiO3) to the determination of the mole fraction

of the components. The differences in the slope of the tangent lines to the ∆mixG and
T∆mixS curves at the initial and final points with respect to the theoretical values are
due to the large mole fraction increment step used in the calculation.

The considerable deviations from the ideal behaviour of activities of the two compo-
nents in the region of validity of Henry’s law (Fig. 2), derived using the phase diagram
with the quasi-real mole fractions, may be due either to the non-zero excess entropy of
mixing or to the occurrence of reactions expressed by scheme (A).

The fact that the enthalpy of mixing is zero while the excess entropy of mixing is
non-zero suggests that melts of the Ca2MgSi2O7–CaSiO3 system can be regarded as
athermal solutions.
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